Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37686369

RESUMEN

Hepatotoxicity, a common adverse drug effect, has been extensively studied in adult patients. However, it is equally important to investigate this condition in pediatric patients to develop personalized treatment strategies for children. This study aimed to identify plasma biomarkers that characterize hepatotoxicity in pediatric patients through an observational case-control study. Metabolomic analysis was conducted on 55 pediatric patients with xenobiotic liver toxicity and 88 healthy controls. The results revealed clear differences between the two groups. Several metabolites, including hydroxydecanoylcarnitine, octanoylcarnitine, lysophosphatidylcholine, glycocholic acid, and taurocholic acid, were identified as potential biomarkers (area under the curve: 0.817; 95% confidence interval: 0.696-0.913). Pathway analysis indicated involvement of primary bile acid biosynthesis and the metabolism of taurine and hypotaurine (p < 0.05). The findings from untargeted metabolomic analysis demonstrated an increase in bile acids in children with hepatotoxicity. The accumulation of cytotoxic bile acids should be further investigated to elucidate the role of these metabolites in drug-induced liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Adulto , Humanos , Niño , Estudios de Casos y Controles , Metabolómica , Ácidos y Sales Biliares
2.
Front Endocrinol (Lausanne) ; 13: 863940, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498405

RESUMEN

Hypophosphatasia (HPP) a rare disease caused by mutations in the ALPL gene encoding for the tissue-nonspecific alkaline phosphatase protein (TNSALP), has been identified as a potentially under-diagnosed condition worldwide which may have higher prevalence than currently established. This is largely due to the overlapping of its symptomatology with that of other more frequent pathologies. Although HPP is usually associated with deficient bone mineralization, the high genetic variability of ALPL results in high clinical heterogeneity, which makes it difficult to establish a specific HPP symptomatology. In the present study, three variants of ALPL gene with uncertain significance and no previously described (p.Del Glu23_Lys24, p.Pro292Leu and p.His379Asn) were identified in heterozygosis in patients diagnosed with HPP. These variants were characterized at phenotypic, functional and structural levels. All genetic variants showed significantly lower in vitro ALP activity than the wild-type (WT) genotype (p-value <0.001). Structurally, p.His379Asn variant resulted in the loss of two Zn2+ binding sites in the protein dimer which may greatly affect ALP activity. In summary, we identified three novel ALPL gene mutations associated with adult HPP. The correct identification and characterization of new variants and the subsequent study of their phenotype will allow the establishment of genotype-phenotype relationships that facilitate the management of the disease as well as making it possible to individualize treatment for each specific patient. This would allow the therapeutic approach to HPP to be personalized according to the unique genetic characteristics and clinical manifestations of each patient.


Asunto(s)
Hipofosfatasia , Fosfatasa Alcalina/genética , Genotipo , Heterocigoto , Humanos , Hipofosfatasia/genética , Fenotipo
3.
Biomedicines ; 10(2)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35203598

RESUMEN

The identification of common targets in Alzheimer's disease (AD) and cardiovascular disease (CVD) in recent years makes the study of the CVD/AD axis a research topic of great interest. Besides aging, other links between CVD and AD have been described, suggesting the existence of common molecular mechanisms. Our study aimed to identify common targets in the CVD/AD axis. For this purpose, genomic data from calcified and healthy femoral artery samples were used to identify differentially expressed genes (DEGs), which were used to generate a protein-protein interaction network, where a module related to AD was identified. This module was enriched with the functionally closest proteins and analyzed using different centrality algorithms to determine the main targets in the CVD/AD axis. Validation was performed by proteomic and data mining analyses. The proteins identified with an important role in both pathologies were apolipoprotein E and haptoglobin as DEGs, with a fold change about +2 and -2, in calcified femoral artery vs healthy artery, respectively, and clusterin and alpha-2-macroglobulin as close interactors that matched in our proteomic analysis. However, further studies are needed to elucidate the specific role of these proteins, and to evaluate its function as biomarkers or therapeutic targets.

4.
J Clin Med ; 10(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065223

RESUMEN

Osteoglycin (OGN) could be a biomarker of mild kidney function impairment in type 2 diabetes (T2D). Our study aimed to determine the association between serum OGN and impaired kidney function risk in T2D patients and to analyze its potential role as an estimator of kidney disturbances in this population. This cross-sectional study included 147 T2D patients (65 ± 8 years, 58.5% males), and 75 healthy controls (63 ± 10 years, 36% males). Circulating OGN levels were determined by ELISA. Linear regression modeling was performed to determine the variables influencing circulating OGN, and an ROC curve was plotted to assess the usefulness of OGN as an estimator of diabetic kidney disease risk. Circulating OGN was significantly increased in T2D patients compared to controls (18.41 (14.45-23.27) ng/mL vs. 8.74 (7.03-12.35) ng/mL; p < 0.001). We found a progressive increase in serum OGN according to the severity of kidney impairment in T2D patients (normal kidney function: 16.14 (12.13-20.48) ng/mL; mildly impaired kidney function: 19.15 (15.78-25.90) ng/mL; moderate impaired kidney function: 21.80 (15.06-29.22) ng/mL; p = 0.006). Circulating OGN was an independent estimator of mildly impaired kidney function risk in T2D patients. We suggest that serum OGN could act as an albuminuria-independent biomarker of incipient kidney dysfunction in T2D patients.

5.
J Pharm Biomed Anal ; 190: 113535, 2020 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-32858413

RESUMEN

Currently, there are not many in-depth studies focusing on the protein analysis of antioxidants involved in the calcification of the femoral artery. In this context, this study aimed to increase the knowledge of the molecular redox mechanisms involved in this process. Samples from calcified femoral artery sections of seven patients diagnosed with type 2 diabetes (T2D) and critical ischemia were analyzed. The isolated proteins were identified using liquid chromatography and mass-mass spectrometry and were used to generate a protein-protein interaction (PPI) network. Subsequently, highly interconnected regions within the PPI network were identified to obtain a representative module linked to oxidative stress. The proteins of this module with a higher degree of centrality (hubs) were selected to validate them by datamining, transcriptomic and proteomic assays. The analysis of modules of the femoral PPI network showed a module with mainly antioxidant function in which superoxide dismutase 2 (SOD2) was reported as the most important hub. SOD2 was validated at transcriptomic and proteomic level and confirmed by datamining. These results indicate that SOD activity is highly linked to the atherosclerotic process. We suggest that SOD2 could be a potential therapeutic target to prevent the calcification of the femoral artery. The maintenance of optimal SOD2 levels and its cofactors could be used as a preventive strategy for vascular calcification and the related cardiovascular complications in T2D patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Biomarcadores , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Arteria Femoral/metabolismo , Humanos , Estrés Oxidativo , Proteómica , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
6.
Front Plant Sci ; 8: 118, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197170

RESUMEN

Together with thioredoxins (Trxs), plant peroxiredoxins (Prxs), and sulfiredoxins (Srxs) are involved in antioxidant defense and redox signaling, while their regulation by post-translational modifications (PTMs) is increasingly regarded as a key component for the transduction of the bioactivity of reactive oxygen and nitrogen species. Among these PTMs, S-glutathionylation is considered a protective mechanism against overoxidation, it also modulates protein activity and allows signaling. This study explores the glutathionylation of recombinant chloroplastic 2-Cys Prx and mitochondrial Prx IIF from Pisum sativum. Glutathionylation of the decameric form of 2-Cys Prx produced a change in the elution volume after FPLC chromatography and converted it to its dimeric glutathionylated form, while Prx IIF in its reduced dimeric form was glutathionylated without changing its oligomeric state. Mass spectrometry demonstrated that oxidized glutathione (GSSG) can glutathionylate resolving cysteine (Cys174), but not the peroxidatic equivalent (Cys52), in 2-Cys Prx. In contrast, GSSG was able to glutathionylate both peroxidatic (Cys59) and resolving (Cys84) cysteine in Prx IIF. Glutathionylation was seen to be dependent on the GSH/GSSG ratio, although the exact effect on the 2-Cys Prx and Prx IIF proteins differed. However, the glutathionylation provoked a similar decrease in the peroxidase activity of both peroxiredoxins. Despite growing evidence of the importance of post-translational modifications, little is known about the enzymatic systems that specifically regulate the reversal of this modification. In the present work, sulfiredoxin from P. sativum was seen to be able to deglutathionylate pea 2-Cys Prx but not pea Prx IIF. Redox changes during plant development and the response to stress influence glutathionylation/deglutathionylation processes, which may represent an important event through the modulation of peroxiredoxin and sulfiredoxin proteins.

7.
Front Plant Sci ; 4: 460, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24348485

RESUMEN

Mitochondrial respiration provides the energy needed to drive metabolic and transport processes in cells. Mitochondria are a significant site of reactive oxygen species (ROS) production in plant cells, and redox-system components obey fine regulation mechanisms that are essential in protecting the mitochondrial integrity. In addition to ROS, there are compelling indications that nitric oxide can be generated in this organelle by both reductive and oxidative pathways. ROS and reactive nitrogen species play a key role in signaling but they can also be deleterious via oxidation of macromolecules. The high production of ROS obligates mitochondria to be provided with a set of ROS scavenging mechanisms. The first line of mitochondrial antioxidants is composed of superoxide dismutase and the enzymes of the ascorbate-glutathione cycle, which are not only able to scavenge ROS but also to repair cell damage and possibly serve as redox sensors. The dithiol-disulfide exchanges form independent signaling nodes and act as antioxidant defense mechanisms as well as sensor proteins modulating redox signaling during development and stress adaptation. The presence of thioredoxin (Trx), peroxiredoxin (Prx) and sulfiredoxin (Srx) in the mitochondria has been recently reported. Cumulative results obtained from studies in salt stress models have demonstrated that these redox proteins play a significant role in the establishment of salt tolerance. The Trx/Prx/Srx system may be subjected to a fine regulated mechanism involving post-translational modifications, among which S-glutathionylation and S-nitrosylation seem to exhibit a critical role that is just beginning to be understood. This review summarizes our current knowledge in antioxidative systems in plant mitochondria, their interrelationships, mechanisms of compensation and some unresolved questions, with special focus on their response to abiotic stress.

8.
Plant Physiol ; 155(2): 944-55, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21139087

RESUMEN

Sulfiredoxin (Srx) couples the energy of ATP hydrolysis to the energetically unfavorable process of reducing the inactive sulfinic form of 2-cysteine peroxiredoxins (Prxs) to regenerate its active form. In plants, Srx as well as typical 2-cysteine Prx have been considered as enzymes with exclusive chloroplast localization. This work explores the subcellular localization of Srx in pea (Pisum sativum) and Arabidopsis (Arabidopsis thaliana). Immunocytochemistry, analysis of protein extracts from isolated intact organelles, and cell-free posttranslational import assays demonstrated that plant Srx also localizes to the mitochondrion in addition to plastids. The dual localization was in line with the prediction of a signal peptide for dual targeting. Activity tests and microcalorimetric data proved the interaction between Srx and its mitochondrial targets Prx IIF and thioredoxin. Srx catalyzed the retroreduction of the inactive sulfinic form of atypical Prx IIF using thioredoxin as reducing agent. Arabidopsis Srx also reduced overoxidized human Prx V. These results suggest that plant Srx could play a crucial role in the regulation of Prx IIF activity by controlling the regeneration of its overoxidized form in mitochondria, which are sites of efficient reactive oxygen species production in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Peroxirredoxinas/metabolismo , Pisum sativum/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clonación Molecular , Humanos , Mitocondrias/enzimología , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Pisum sativum/genética , Peroxirredoxinas/genética , Plastidios/enzimología , ARN de Planta/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
J Exp Bot ; 61(5): 1509-21, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20176891

RESUMEN

The antioxidant function of 2-Cys peroxiredoxin (Prx) involves the oxidation of its conserved peroxidatic cysteine to sulphenic acid that is recycled by a reductor agent. In conditions of oxidative stress, the peroxidatic cysteine can be overoxidized to sulphinic acid inactivating the Prx. An enzyme recently discovered, named sulfiredoxin (Srx), reduces the sulphinic 2-Cys Prx (Prx-SO(2)H). To explore the physiological functions of Srx in plants we have cloned, expressed and purified to homogeneity a Srx from Arabidopsis thaliana (AtSrx), as well as five variants by site-directed mutagenesis on amino acids involved in its activity. The activity of sulfiredoxin, determined by a new method, is dependent on the concentration of the sulphinic form of Prx and the conserved Srx is capable of regenerating the functionality of both pea and Arabidopsis Prx-SO(2)H. Molecular modelling of AtSrx and the facts that the R28Q variant shows a partial inactivation, that the activity of the E76A variant is equivalent to that of the native enzyme and that the double mutation R28Q/E76A abolishes the enzymatic activity suggests that the pair His100-Glu76 may be involved in the activation of C72 in the absence of R28. The knock-out mutant plants without Srx or 2-Cys Prx exhibited phenotypical differences under growth conditions of 16 h light, probably due to the signalling role of the sulphinic form of Prx. These mutants showed more susceptibility to oxidative stress than wild-type plants. This work presents the first systematic biochemical characterization of the Srx/Prx system from plants and contributes to a better understanding of its physiological function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Peroxirredoxinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Western Blotting , Electroforesis en Gel de Poliacrilamida , Peróxido de Hidrógeno/metabolismo , Cinética , Mutagénesis Sitio-Dirigida , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Pisum sativum/genética , Pisum sativum/metabolismo , Peroxirredoxinas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Reacción en Cadena de la Polimerasa
10.
PLoS One ; 4(8): e6619, 2009 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-19672306

RESUMEN

BACKGROUND: An excess of caffeine is cytotoxic to all eukaryotic cell types. We aim to study how cells become tolerant to a toxic dose of this drug, and the relationship between caffeine and oxidative stress pathways. METHODOLOGY/PRINCIPAL FINDINGS: We searched for Schizosaccharomyces pombe mutants with inhibited growth on caffeine-containing plates. We screened a collection of 2,700 haploid mutant cells, of which 98 were sensitive to caffeine. The genes mutated in these sensitive clones were involved in a number of cellular roles including the H(2)O(2)-induced Pap1 and Sty1 stress pathways, the integrity and calcineurin pathways, cell morphology and chromatin remodeling. We have investigated the role of the oxidative stress pathways in sensing and promoting survival to caffeine. The Pap1 and the Sty1 pathways are both required for normal tolerance to caffeine, but only the Sty1 pathway is activated by the drug. Cells lacking Pap1 are sensitive to caffeine due to the decreased expression of the efflux pump Hba2. Indeed, ?hba2 cells are sensitive to caffeine, and constitutive activation of the Pap1 pathway enhances resistance to caffeine in an Hba2-dependent manner. CONCLUSIONS/SIGNIFICANCE: With our caffeine-sensitive, genome-wide screen of an S. pombe deletion collection, we have demonstrated the importance of some oxidative stress pathway components on wild-type tolerance to the drug.


Asunto(s)
Adaptación Fisiológica , Cafeína/farmacología , Genoma Fúngico , Schizosaccharomyces/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Mutación , Estrés Oxidativo , Proteínas Asociadas a Pancreatitis , Schizosaccharomyces/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...